Novel Phenylpropanoids and Lignans from IIlicium verum

Lai-King Sy and Geoffrey D. Brown*
Chemistry Department, The University of Hong Kong, Pokfulam Rd., Hong Kong

Received February 19, 1998

Abstract

Nine new phenylpropanoids (2-7, 10, 12, and 14) and two compounds representing novel structural classes of $7-0-8^{\prime}$ and $7-0-8^{\prime} .8-0-7^{\prime}$ lignans ($\mathbf{8}$ and $\mathbf{9}$, respectively) have been isolated from Illicium verum and their structures established by two-dimensional NMR. Most of these compounds appear to be biogenetically derived from threo-anethole glycol: rel ative stereochemistries for some members of this series were established by NOESY; absol ute stereochemistries of others were determined by formation of Mosher esters.

Illicium verum Hook f. (Illiciaceae, Chinese star anise) is an evergreen tree indigenous to southern China, used by local people as a stimulant and carminative. ${ }^{1}$ It is easily confused with the extremely posionous I. anisatum (containing the GABA antagonist anisatin, which is reported to be the most powerful poison of plant origin, and related sesquiterpenes), which is found in the same geographical region and which produces morphologically similar fruits. ${ }^{2}$ Previous chemical investigations of I. verum have yielded 4-ethoxyphenol, anisyl ketone, ${ }^{3}$ the phenylpropanoid, anisoxide, ${ }^{4}$ and the sesquiterpenes veranisatins A and B, ${ }^{5}$ as well as various cinnamic acid derivatives. ${ }^{6}$

Results and Discussion

Extraction of the leaves of I. verum with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielded nine new phenylpropanoid derivatives ($\mathbf{2}-\mathbf{7}, \mathbf{1 0}$, 12, and 14) and two new lignans (8 and 9). Many of these compounds are apparently derived from the simple phenyl propanoid diol, threo-anethole glycol (1a), which was also present as a significant component of the extract. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR assignments for $\mathbf{1 a}$ and for all compounds reported in this paper were rigorously determined by means of 2D-NMR (HSQC, HMBC, and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY) (Tables 1 and 2).

Compound 1 was isolated from I. verum predominantly as the threo form as shown by NMR; in particuIar, a J 7,8 coupling constant of 7.8 Hz in the ${ }^{1} \mathrm{H}$ NMR spectrum is considered diagnostic for this diastereoisomer. ${ }^{7}$ Smaller amounts of the erythro isomer (1b) were also obtained, for which this coupling constant has been shown previously to have a consistently smaller value (ca. 4 Hz). ${ }^{7}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts for these two diastereoisomers of anethole glycol also agreed with those reported previously. ${ }^{7}$ A pure sample of $\mathbf{1 a}$ had a significant optical rotation $\left([\alpha]_{D}+7.7^{\circ}\right)$. Although both threo and erythro forms of anethole glycol have been reported from nature, there is apparently no data available in the literature concerning optical rotations of either the $7 \mathrm{R}, 8 \mathrm{R}$ or $7 \mathrm{~S}, 8 \mathrm{~S}$ threo isomers with which to make a comparison with our sample from I. verum. Consequently, we endeavored to determine the absolute configuration at the 7 - and 8 -positions of $\mathbf{1 a}$ by forma-

[^0]

1a $\mathrm{R}_{1}=\mathrm{OH} ; \mathrm{R}_{2}=\mathrm{H}$ (threo, $7 S, 8 \mathrm{~S}$ form shown)
1b $\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{OH}$ (erythro)

lc $\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{OH} ; \mathrm{R}_{3}=\mathrm{H} ; \mathrm{R}_{4}=\mathrm{R}$-OMTP
(S/R)-OMTP
$\mathrm{R}_{1} \mathrm{R} \mathrm{M}_{2} \mathrm{R}_{2} \mathrm{R}_{3} \mathrm{R}_{3} \mathrm{OH}, \mathrm{R}_{4}=\mathrm{H}$
If $\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=$ R-OMTP; $\mathrm{R}_{3}=\mathrm{H} ; \mathrm{R}_{4}=\mathrm{OH}$
$\mathbf{1 g} \mathrm{R}_{1}=\mathrm{OH} ; \mathrm{R}_{2}=\mathrm{H} \cdot \mathrm{R}_{3}=S$-OMTP; $\mathrm{R}_{4}=\mathrm{H}$
1h $\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{OH} ; \mathrm{R}_{3}=\mathrm{H} ; \mathrm{R}_{4}=S$-OMTP
$1 \mathrm{i} \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=S$-OMTP; $\mathrm{R}_{3}=\mathrm{H} ; \mathrm{R}_{4}=\mathrm{OH}$
$1 \mathrm{j} \mathrm{R}_{1}=S$-OMTP; $\mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{3}=\mathrm{OH} ; \mathrm{R}_{4}=\mathrm{H}$

2

3
tion of esters with the two enantiomers of α-methoxy-α-(trifluoromethyl)phenylacetyl chloride ((S)-(+)-MTPCI and (R)-(-)-MTPCI). 8 In the event, treatment of 1a with the (S)-(+) enantiomer of MTPCI yielded four compounds (1c-f), which were separable by HPLC; similarly, application of (R)-(-)-MTPCI yielded the corresponding four mirror image esters $\mathbf{1 g}-\mathbf{j}$, respectively. (Note: R/S nomenclature for the α-methoxy- α-(trifluoromethyl)phenylacetate (MTPA) moiety of the esters so formed is reversed with respect to the acid chloride derivatizing agent.) Formation of four such distinct isomers from esterification with each enantiomer of

Table 1. ${ }^{13} \mathrm{C}$ NMR Assignments (δ) for $\mathbf{1 - 7}$

atom	1a	1b	2	3	4	5	6	$7^{\text {a }}$
1	159.4	159.4	159.6	159.7	159.6	158.0	158.4	158.5
2/6	113.9	113.8	114.0	114.0	114.1	113.7	113.5	114.3
3/5	128.1	128.0	128.3	128.5	127.8	129.7	130.7	129.6
4	133.3	132.5	132.3	129.9	130.7	131.7	130.4	133.8
7	79.2	77.3	77.0	80.7	84.6	59.5	59.3	58.9
8	72.3	71.3	75.1	70.4	81.3	72.8	68.9	70.3
9	18.8	17.5	16.6	18.8	16.4	22.6	22.2	21.4
$1{ }^{\prime}$			163.5	163.6	160.4	158.8	158.9	158.2
2'/6'			113.7	113.7	113.8	113.4	113.4	114.0
3'/5'			131.7	131.8	128.0	128.0	128.0	129.0
$4{ }^{\prime}$			122.7	122.5	130.7	135.3	134.2	135.1
7			166.2	165.7	104.0	80.4	75.2	
$1-\mathrm{OMe}$	55.3	55.3	55.3	55.3	55.3	55.04	55.24	55.3
1'-OMe			55.5	55.5	55.4	55.14	55.18	55.2

${ }^{\text {a }}$ All assignments for 1-4 may be interchanged (as a group) with those for $1^{\prime}-4^{\prime}$.
Table 2. ${ }^{1} \mathrm{H}$ NMR Assignmentsa (δ) for $\mathbf{1 - 7}$

atom	1a	1b	2	3	4	5	6	$7{ }^{\text {b }}$
2/6	6.87 (d, 8.7)	6.90 (d, 8.6)	6.89 (d, 8.6)	6.88 (d, 8.7)	6.91 (d, 8.7)	6.63 (d, 8.8)	6.74 (d, 8.7)	6.86 (d, 8.7)
3/5	7.23 (d, 8.7)	7.29 (d, 8.6)	7.32 (d, 8.6)	7.34 (d, 8.7)	7.34 (d, 8.7)	6.74 (d, 8.8)	6.89 (d, 8.7)	7.28 (d, 8.7)
7	4.28 (d, 7.8)	4.60 (d, 4.5)	4.72 (d, 7.4)	5.71 (d, 7.2)	4.57 (d, 8.1)	2.75 (m)	$\begin{aligned} & 2.87(\mathrm{dd}, \\ & 8.5,4.5) \end{aligned}$	3.71 (d, 8.7)
8	3.82 (m)	4.00 (m)	$\begin{aligned} & 5.30(\mathrm{dq}, \\ & 7.4,6.4) \end{aligned}$	$\begin{aligned} & 4.19 \text { (dq, } \\ & 7.2,6.3) \end{aligned}$	$\begin{aligned} & 4.04(\mathrm{dq}, \\ & 8.1,6.1 \end{aligned}$	$\begin{aligned} & 4.36 \text { (dq, } \\ & 9.1,6.2) \end{aligned}$	$\begin{gathered} 4.23(\mathrm{dq} \\ 8.5,6.2) \end{gathered}$	$\begin{aligned} & 4.45 \text { (dq, } \\ & 8.7,6.1) \end{aligned}$
9	1.00 (d, 6.3)	1.10 (d, 6.4)	1.17 (d, 6.4)	1.13 (d, 6.3)	1.42 (d, 6.1)	0.94 (d, 6.2)	1.06 (d, 6.2)	1.18 (d, 6.1)
$2^{\prime} / 6^{\prime}$			6.94 (d, 8.9)	6.92 (d, 8.9)	6.93 (d, 8.7)	6.66 (d, 8.7)	6.77 (d, 8.7	6.82 (d, 8.7)
$3^{\prime} / 5^{\prime}$			8.02 (d, 8.9)	8.03 (d, 8.9)	7.48 (d, 8.7)	6.98 (d, 8.7)	6.99 (d, 8.7)	7.18 (d, 8.7)
$7{ }^{\prime}$					6.17 (s)	4.97 (d, 9.8)	5.16 (d, 4.5)	
1-OMe	3.81 (s)	3.81 (s)	3.81 (s)	3.80 (s)	3.82 (s)	3.70 (s)	3.78 (s)	3.78
1^{\prime}-OMe			3.87 (s)	3.86 (s)	3.82 (s)	3.71 (s)	3.77 (s)	3.76

${ }^{\text {a }}$ Multiplicity and coupling constants (Hz) indicated in parentheses. ${ }^{\text {b }}$ Assignments for $2-6$ may be interchanged (as a group) with those for $2^{\prime \prime}-6^{\prime}$.

$\delta_{\mathrm{H}} \Delta(\mathbf{1 h - 1 c}) 7 R, 8 R$ isomer of 1 a
$\delta_{\mathrm{H}} \Delta(\mathbf{1 g}-1 \mathbf{d}) 7 S, 8 S$ isomer of $\mathbf{1 a}$ 1c R-OMTP derivative $\mathrm{R}_{1}=\mathrm{Ph} ; \mathrm{R}_{2}=\mathrm{OMe} \lg S$-OMTP derivative $\mathrm{R}_{1}=\mathrm{Ph} ; \mathrm{R}_{2}=\mathrm{OMe}$ 1h S-OMTP derivative $\mathrm{R}_{1}=\mathrm{OMe} ; \mathrm{R}_{2}=\mathrm{Ph} 1 \mathrm{~d} R$-OMTP derivative $\mathrm{R}_{1}=\mathrm{OMe} ; \mathrm{R}_{2}=\mathrm{Ph}$

$\delta_{\mathrm{H}} \Delta(1 \mathrm{i}-1 \mathrm{f}) 7 R, 8 R$ isomer of $\mathbf{1 a}$
$\delta_{\mathrm{H}} \Delta(\mathbf{1 j - 1 e}) 7 S, 8 S$ isomer of $\mathbf{1 a}$ If R-OMTP derivative $\mathrm{R}_{1}=\mathrm{OMe} ; \mathrm{R}_{2}=\mathrm{Ph} 1 \mathrm{j} S$-OMTP derivative $\mathrm{R}_{1}=\mathrm{OMe} ; \mathrm{R}_{2}=\mathrm{Ph}$ ii S-OMTP derivative $\mathrm{R}_{1}=\mathrm{Ph} ; \mathrm{R}_{2}=\mathrm{OMe}$ 1e R-OMTP derivative $\mathrm{R}_{1}=\mathrm{Ph} ; \mathrm{R}_{2}=\mathrm{OMe}$
Figure 1. Chemical shift differences between diastereoisomeric pairs of compounds formed from the derivatization of threo-anethole glycol (1a, 7S/8S and 7R/8R) by (S)-(+)- and (R)-(-)-MTPCI. From calculated differences ((S)-MTPA) -((R)MTPA) $\mathbf{1 c}, \mathbf{l h}, \mathbf{l f}$, and $\mathbf{1 i}$ are derivatives of the $7 R, 8 R$ threo isomer (at the 7 - and 8 - positions), while $\mathbf{1 g}, \mathbf{1 d}, \mathbf{1 j}$, and $\mathbf{l e}$ are derived from the $7 \mathrm{~S}, 8 \mathrm{~S}$ isomer.
MTPCI is only possible if compound $\mathbf{1}$ is actually present as a mixture of $7 R, 8 R$ and $7 \mathrm{~S}, 8 \mathrm{~S}$ forms and if MTPA esters are formed at both the 7-OH and 8-OH positions. Detailed analysis of ${ }^{1} \mathrm{H}$ chemical shift differences between (S)-MTPA and (R)-MTPA derivatives for each of the four possible products (i.e., $\Delta \delta^{1} \mathrm{H}((\mathrm{S})-\mathrm{MTPA})-((\mathrm{R})-$ MTPA) for $\mathbf{1 g}-\mathbf{1 d}, \mathbf{1 j}-\mathbf{1 e}, \mathbf{1 h}-\mathbf{1 c}$ and $\mathbf{1 i}-\mathbf{1 f})$, according to the preferred conformations normally assumed for MTPA esters ${ }^{8}$ (Figure 1), confirmed this supposition and

$\delta_{\mathrm{H}} \Delta(\mathbf{3 d} \mathbf{3 a}) 7 R, 8 R$ isomer of $\mathbf{3}$
3a R-OMTP derivative $\mathrm{R}_{1}=\mathrm{Ph} ; \mathrm{R}_{2}=\mathrm{OMe}$
$\delta_{\mathrm{H}} \Delta$ (3c-3b) $7 \mathrm{~S}, 8 \mathrm{~S}$ isomer of 3
3e S-OMTP derivative $\mathrm{R}_{1}=\mathrm{Ph} ; \mathrm{R}_{2}=\mathrm{OMe}$ 3b R -OMTP derivative $\mathrm{R}_{1}=\mathrm{OMe} ; \mathrm{R}_{2}=\mathrm{Ph}$

Figure 2. Chemical shift differences ((S)-OMTP - (R)-OMTP) between diastereoisomeric pairs of compounds formed in the derivatization of threo-7-(4-methoxybenzol oyl)anethole glycol (3, 7S/8S and 7R/8R) by (S)-(+)- and (R)-(-)-MTPCI. Compounds 3a and 3d derived from threo 7R,8R isomer; compounds 3b and 3c derived from 7S,8S isomer.
demonstrated unambiguously that compound 1a from I. verum is indeed the threo form of anethole glycol (as previously supposed from the value of J 7,8) and is an approximately $2: 1$ mixture of $7 \mathrm{~S}, 8 \mathrm{~S}$ and $7 \mathrm{R}, 8 \mathrm{R}$ isomers.

Compound $\mathbf{2}$ is the 8-(4-methoxybenzoloyl) derivative of anethole glycol as shown by a correlation between C-7' of the benzoyl substituent and $\mathrm{H}-8$ of the anethole glycol moiety in the HMBC spectrum. The coupling constant between $\mathrm{H}-7$ and $\mathrm{H}-8$ in ${ }^{1} \mathrm{H}$ NMR suggests threo stereochemistry for this natural product, consistent with $\mathbf{2}$ being derived from 1a. Compound $\mathbf{3}$ is the 7-(4-methoxybenzol oyl) derivative of anethole glycol (as shown by a correlation in HMBC from the benzoyl carbonyl to H-7). An attempt was made to establish the absolute stereochemistry of the 8-secondary hydroxyl in 3 by formation of Mosher esters using both (S)-(+)- and (R)-(-)-MTPCI as previously. ${ }^{8}$ Derivatization with (S)-$(+)-\mathrm{MTPCI}$ yielded two diastereiosmers (3a and 3b), while use of (R)-(-)-MTPCI yielded the two corresponding mirror images (3c and 3d). Analysis of chemical

4

9

6a

Figure 3. NOESY correlations used in assigning relative configuration of 4, 6a, and 9 indicated by arrows from ${ }^{1} \mathrm{H}$ to ${ }^{1} \mathrm{H}$.
shift differences between the two diastereoisomeric pairs ${ }^{8}$ (i.e., $\Delta \delta^{1} \mathrm{H}((\mathrm{S})-\mathrm{MTPA})-((\mathrm{R})-\mathrm{MTPA})$ for 3d-3a and $\mathbf{3 c} \mathbf{- 3 b}$) confirmed the presumed threo stereochemistry and indicated that compound $\mathbf{3}$ was an approximately 1:1 mixture of $7 R, 8 R$ and $7 \mathrm{~S}, 8 \mathrm{~S}$ isomers (Figure 2). Given the tendency to partial or complete racem-

3a $\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{MeO}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CO}_{2} \cdot \mathrm{R}_{3}=\mathrm{H} ; \mathrm{R}_{4}=\mathrm{R}$-OMTP $3 \mathrm{~b} \mathrm{R}_{1}=\mathrm{MeO}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CO}_{2}, \mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{3}=\mathrm{R}$-OMTP; $\mathrm{R}_{4}=\mathrm{H}$ $3 \mathrm{c} \mathrm{R}_{1}=\mathrm{MeO}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CO}_{2} ; \mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{3}=\mathrm{S}$-OMTP; $\mathrm{R}_{4}=\mathrm{H}$ $3 \mathrm{~d} \mathrm{R}_{1}=\mathrm{H}_{;} \mathrm{R}_{2}=\mathrm{MeO}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CO}_{2} ; \mathrm{R}_{3}=\mathrm{H} ; \mathrm{R}_{4}=S$-OMTP

ization observed for compounds $\mathbf{1}$ and 3, no further attempts were made to establish the absolute stereochemistry of other novel phenylpropanoid and derived compounds (2,4-10, and 12) described in this paper; relative stereochemistry only, as determined by NMR, is reported. It is proposed that most of these compounds are at least partially racemic; for simplicity, structures are drawn with relative stereochemistry corresponding to the 7S,8S stereoisomer of threo-anethol e glycol only.

Compound $\mathbf{4}$ can be envisaged as being formed from either $\mathbf{2}$ or $\mathbf{3}$ by reduction of the benzoyl ester linkage accompanied by intramolecular ketal formation with a free -OH group in the phenylpropanoid moiety. Relative stereochemistry about the new five-membered ring in 4 was determined from NOESY experiments (Figure 3) and was consistent with threo stereochemistry previ-
ously determined for proposed biogenetic precursors 1-3.

Compounds 5 and 6 are diastereoisomers that apparently arise from direct linkage of a $\mathrm{C}_{6} \mathrm{C}_{1}$ substituent at the reduced 7-position of anethole glycol. Derivatization of either of the 1,3-diols 5 or $\mathbf{6}$ with 2,2-dimethoxypropane ${ }^{9}$) yielded an identical cyclic product 6a, for which relative stereochemistry around the new six-membered ring could be determined by NOESY (Figure 3). This surprising result may be due to the ease of formation of a phenyl-stabilized carbocation at the 7' position under the acid conditions of the derivatization, which would favor rapid ring opening and closing of the ketal and accompanying epimerization at $\mathrm{C}-7^{\prime}$ to yield the thermodynamically more stable all-equatorially substituted 1,3-dioxan (Figure 3). F ormation of the stilbene $\mathbf{6 b}$ as a major byproduct of this reaction is also simply explained by the above mechanism and lends support to this hypothesis. Derivatization of 5 and $\mathbf{6}$ as ketals thus seemed to show that these compounds are diastereoisomeric at the 7'-position; this is consistent with their formation from the nonstereospecific addition of a $\mathrm{C}_{6} \mathrm{C}_{1}$ unit to a $\mathrm{C}_{6} \mathrm{C}_{3}$ phenylpropanoid derived from anethole glycol, as proposed above. Compound 7 is a one-carbon-deficient homologue of $5 / 6$, possibly formed by the analogous addition of a C_{6} unit. The two aromatic rings in 7 are diastereotopic and gave similar but distinguishable NMR resonances, which were confidently assigned using 2D-NMR methodology employed throughout this paper.

14

Compound 8 is apparently formed by ether linkage of two units of threo-anethol glycol. Significant upfield shifts were observed in the ${ }^{13} \mathrm{C}$ resonances for $\mathrm{C}-7$ and C-8' ($\Delta \delta+0.21 \mathrm{ppm}$ and +0.10 ppm , respectively) of 8 following a $\mathrm{D}_{2} \mathrm{O}$ shake, indicating that these carbons bear -OH groups (the upfield shift is a consequence of secondary isotope effects following replacement of an

Table 3. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ Assignments for Compounds 8 and 9

atom	$\delta{ }^{13} \mathrm{C}$		$\delta^{1} \mathrm{H}^{\text {a }}$	
	8	9	8	9
1	159.1	159.6		
2/6	113.7	113.9	6.88 (d, 8.7)	6.89 (d, 8.7)
3/5	127.7	128.3	7.27 (d, 8.7)	7.33 (d, 8.7)
4	133.0	131.3		
7	74.8	84.2	4.82 (d, 4.1)	4.27 (d, 9.0)
8	78.3	76.9	3.62 (m)	3.72 (dq, 9.0, 6.3)
9	15.8	17.3	0.84 (d, 6.4)	1.00 (d, 6.3)
1^{\prime}	159.5	159.6		
2'/6'	113.8	113.9	6.87 (d, 8.7)	6.89 (d, 8.7)
3'/5'	128.7	128.3	7.20 (d, 8.7)	7.33 (d, 8.7)
4^{\prime}	131.8	131.3		
$7{ }^{\prime}$	86.9	84.2	4.06 (d, 8.4)	4.27 (d, 9.0)
$8{ }^{\prime}$	71.8	76.9	3.82 (m)	3.72 (dq, 9.0, 6.3)
9'	18.3	17.3	0.91 (d, 6.4)	1.00 (d, 6.3)
1-OMe	55.29	55.3	3.81 (s)	3.81 (s)
1'-OMe	55.27	55.3	3.80 (s)	3.81 (s)

a Multiplicity and coupling constants (Hz) indicated in parentheses.
-OH group by an -OD group ${ }^{10}$). Consequently, the ether linkage in compound $\mathbf{8}$ is between oxygenated carbons $\mathrm{C}-7^{\prime}$ and $\mathrm{C}-8$. The value of the ${ }^{1} \mathrm{H}$ coupling constant for $\mathrm{H}-7 / \mathrm{H}-8\left(\mathrm{~J}_{7,8}=4.1 \mathrm{~Hz}\right)$ suggested erythro stereochemistry for this half of the lignan, while that for $\mathrm{H}-7^{\prime} / \mathrm{H}-8^{\prime}(8.4 \mathrm{~Hz})$ suggested threo stereochemistry. We propose that $\mathbf{8}$ is formed by $\mathrm{S}_{\mathrm{N}} 2$-type attack of the 7'-OH group of one molecule of threo-anethole glycol at the 8-position of a second such molecule with consequent inversion of configuration at the 8-position accompanying formation of the $7^{\prime}-0-8$ bond. The 7-0-8' lignan skeleton of 8 apparently represents a new structrual class. ${ }^{11}$
The 1,4-dioxane Iignan 9 demonstrated only nine carbon resonances in the ${ }^{13} \mathrm{C}$ NMR, indicating a symmetry element in the structure of this dimer. The coupling constant between $\mathrm{H}-7 / \mathrm{H}-8$ (and $\mathrm{H}-7^{\prime} / \mathrm{H}-8^{\prime}$) in ${ }^{1} \mathrm{H}$ NMR ($\mathrm{J}=9.0 \mathrm{~Hz}$) was indicative of a trans diaxial relationship between these protons. We propose that 9 is formed from 8 by a second attack of the $8^{\prime}-\mathrm{OH}$ group at the 7 -center with an accompanying second inversion at the 7-position. NOESY spectra for 9 (Figure 3) demonstrated the expected "threo" stereochemistry for each biogenetic phenyl propanoid moiety and a correlation across the oxygen bridge ($\mathrm{H} 7 \rightarrow \mathrm{H} 8^{\prime}$) provided evidence for the proposed double inversion of absolute stereochemistry in one of the biogenetic phenylpropanoid units. Zero optical rotation was recorded for compound 9 , which was consistent with the foregoing proposals. Compound $\mathbf{9}$ is a representative of a second new structural dass of $7-0-8.8-0-7^{\prime}$ lignans. ${ }^{11}$
Two other simple novel phenylpropanoids were also isolated from the extract. Compound $\mathbf{1 0}$ is the acetate of the known compound p-coumaryl alcohol $\mathbf{1 1}$ (compound 11 was also present in the extract and was identified from its NMR spectrum ${ }^{12}$); compound 12 incorporates a 3-hydroxyl group. Compound $\mathbf{1 3}$ is a known lignan ${ }^{13,14}$ belonging to the well-established furan class. ${ }^{11}$
Known compounds from the extract which were identified from their 1D-NMR spectra included transanethole, ${ }^{15,16}$ (4-hydroxyphenyl)ethanol, ${ }^{17}$ anisyl alcohol, ${ }^{18} \mathrm{p}$-anisaldehyde, ${ }^{19}$ and p -anisic acid. ${ }^{20}$

Experimental Section

General Experimental Procedures. Chemical shifts are expressed in ppm (δ) relative to TMS as internal standard. All NMR experiments were run on a Bruker DRX 500 instrument. HSQC and HMBC spectra were recorded with 1024 data points in F_{2} and 256 data points in F_{1}. High-resolution MS were re corded in EI mode at 70 e.v. on a Finnigan-MAT 95 MS spectrometer. IR spectra were recorded in CHCl_{3} on a BIO-RAD FT S-7 IR spectrometer. Column chromatography was performed using silica gel $60-200 \mu \mathrm{~m}$ (Merck). HPLC separations were performed using a Varian chromatograph equipped with RI star 9040 and UV 9050 detectors and a Intersil PREP-SIL $20 \mathrm{~mm} \times$ 25 cm column, flow rate $8 \mathrm{~mL} / \mathrm{min}$.
Plant Material. Leaf tissue of I. verum was obtained from the South China Botanical Garden (plant material originally col lected in Guangxi province by the Guangxi Institute of Botany). A voucher spedimen (Hao Gang103) has been deposited in the University of Hong Kong Herbarium (HKU).
Extraction and Isolation. The fresh sample (1.2 kg) was ground to a fine powder under liquid N_{2} in order to ensure complete rupture of plant cell walls and liberation of intracellular contents and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ over several days. The organic extract was then dried and evaporated under reduced pressure to yield a dark green oil ($26.5 \mathrm{~g} ; 2.2 \% \mathrm{w} / \mathrm{w}$). Compounds 1-14 were isolated by column chromatography using hexane and ethyl acetate (TLC plates used to monitor the column were visualized using p -anisaldehyde). In most cases, further purification was required by HPLC, using ethyl acetate/hexane: $\mathbf{1 a}(161 \mathrm{mg}) ; \mathbf{1 b}(59 \mathrm{mg}) ; \mathbf{2}$ (16 mg); $\mathbf{3}(26 \mathrm{mg}) ; \mathbf{4}(23 \mathrm{mg}) ; \mathbf{5}(87 \mathrm{mg}) ; \mathbf{6}(58 \mathrm{mg}) ; \mathbf{7}$ (51 mg); $\mathbf{8}$ (567 mg); $\mathbf{9}$ (16 mg); $\mathbf{1 0}$ (12 mg); $\mathbf{1 1}(24 \mathrm{mg})$; 12 (6 mg); $\mathbf{1 3}$ (540 mg); $\mathbf{1 4}$ (15 mg); trans-anethole (1.28 g); (4-hydroxyphenyl) ethanol (24 mg); anisyl al cohol (75 mg); p-anisaldehyde (83 mg); p-anisic acid (26 mg).
threo-Anethole glycol (1a): oil; [$\alpha]_{\mathrm{D}}=+7.7^{\circ}$ (c 2.22, $\left.\mathrm{CHCl}_{3}\right)$; IR (CHCl_{3}) $v_{\text {max }} 3420(\mathrm{br}), 3011,2970,2932$, 2856, 1612, 1514, $1250 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, Tables 1 and 2; HREIMS m/z 182.0945 (calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3}, \Delta-0.2 \mathrm{mmu}$) (10), 137 (100), 109 (30), 94 (15).
erythro-Anethole glycol (1b) isolated as a mixture with 1a: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, Tables 1 and 2 .
Derivatization of la with (S)-(+)-MTPCI To Form (R)-MTPA Esters $\mathbf{1 c}-\mathbf{f}$. To a solution of threo-anethole glycol la (19.4 mg) in pyridine (0.36 mL) was added (S)-$(+)-\mathrm{MTPCI}(0.02 \mathrm{~mL})$. The solution was allowed to stand at room temperature for 13 h , and then N, N di iisopropylethylamine (0.02 mL) was added and the mixture allowed to stand for 10 min . Solvent was evaporated, and the products were separated by HPLC in 15% ethyl acetate/hexane yielding compounds $\mathbf{1 c}-\mathbf{f}$.
Compound 1c: $\mathrm{t}_{\mathrm{R}} 21.5 \mathrm{~min}$ (23.7% of total reaction product); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.49\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime} / 8^{\prime}\right)$), 7.37 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}-7^{\prime}$), $7.27(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-3 / 5), 6.90$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{H}-2 / 6), 5.31(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=7.3,6.3$ $\mathrm{Hz}, \mathrm{H}-8), 4.62$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.3,4.2 \mathrm{~Hz}, \mathrm{H}-7$), 3.82 (3 H , s, 1-OMe), 3.54 ($3 \mathrm{H}, \mathrm{q}, \mathrm{J}=1.0 \mathrm{~Hz}, \mathrm{z}^{\prime}-\mathrm{OM} \mathrm{e}$), 2.17 (1 H , $\mathrm{d}, \mathrm{J}=4.3 \mathrm{~Hz}, 7-\mathrm{OH}), 1.12(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{H}-9)$.
Compound 1d: $t_{R} 24.8 \mathrm{~min}$ (47.5% of total reaction product); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime} / 8^{\prime}\right), 7.40$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}-7^{\prime}$), $7.21(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-3 / 5), 6.85$
$(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{H}-2 / 6), 5.29(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=7.5,6.4$ $\mathrm{Hz}, \mathrm{H}-8), 4.57$ (1H, dd, J $=7.5,3.4 \mathrm{~Hz}, \mathrm{H}-7), 3.80(3 \mathrm{H}$, s, 1-OMe), 3.57 (3H, q, J = $1.1 \mathrm{~Hz}, 2^{\prime}-\mathrm{OMe}$), 2.11 (1 H , $\mathrm{d}, \mathrm{J}=3.4 \mathrm{~Hz}, 7-\mathrm{OH}), 1.19(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-9)$.

Compound le: $\mathrm{t}_{\mathrm{R}} 32.4 \mathrm{~min}$ (18.4% of total reaction product); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.42$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime} / 8^{\prime}$), 7.38 (3H, m, H-5'-7'), $7.29(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{H}-3 / 5), 6.89$ ($2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{H}-2 / 6$), $5.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{H}-7)$, 4.07 (1H, m, H-8), 3.82 (3H, s, 1-OMe), 3.44 (3H, q, J = $0.7 \mathrm{~Hz}, 2^{\prime}-\mathrm{OMe}$), 1.90 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.7 \mathrm{~Hz}, 8-\mathrm{OH}$), 1.00 $(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-9)$.
Compound 1f: $\mathrm{t}_{\mathrm{R}} 35.4 \mathrm{~min}$ (10.4\% of total reaction product); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.41-7.34\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}-\right.$ $\left.8^{\prime}\right), 7.15(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{H}-3 / 5), 6.84(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7$ Hz, H-2/6), 5.58 (1H, d, J $=8.1 \mathrm{~Hz}, \mathrm{H}-7$), 4.09 ($1 \mathrm{H}, \mathrm{m}$, H-8), 3.81 (3H, s, 1-OMe), 3.53 (3H, q, J = $1.0 \mathrm{~Hz}, 2^{\prime}-$ OMe), $2.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, 8-\mathrm{OH}), 1.05(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ 6.4 Hz, H-9).

Derivatization of 1a with (R)-(-)-MTPCI To Form (S)-MTPA Esters $\mathbf{1 g}-\mathbf{j}$ ($\mathbf{1 g}$ Is Mirror Image of 1c, 1h Is Mirror Image of 1d, $\mathbf{1 i}$ Is Mirror Image of $\mathbf{1 e}, \mathbf{1 j}$ Is Mirror Image of $\mathbf{1 f}$). The same experimental procedure was adopted as for (S)-(+)-MTPCI. Chromatographic data wereidentical to within 0.1 min (2\% peak area) for $\mathbf{1 g}$ and $\mathbf{1 c}$. NMR data for $\mathbf{1 g}$ were identical to within 0.01 ppm with 1c (except 7-OH). Chromatographic data were identical to within 0.1 min (2% peak area) for $\mathbf{1 h}$ and $\mathbf{1 d}$. NMR data for $\mathbf{1 h}$ were identical within 0.01 ppm with 1d (except 7-OH). Chromatographic data wereidentical to within 0.1 min (2% peak area) for $\mathbf{1}$ and $\mathbf{1 e}$. NMR data for $\mathbf{1 i}$ were identical within 0.01 ppm with $\mathbf{l e}$ (except $8-\mathrm{OH}$). Chromatographic data were identical to within 0.1 min (2\% peak area) for $\mathbf{1 j}$ and $\mathbf{1 f}$. NMR data for $\mathbf{1 j}$ were identical within 0.01 ppm with 1 f (except 8-OH).
8-(4-Methoxybenoloyl)anethole glycol, verimol A (2): oil; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3400(\mathrm{br}), 3013,2936,2841$, 1707, 1607, 1514, 1254, $1169 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} N M R$ and ${ }^{13} \mathrm{C}$ NMR, Tables 1 and 2; HREIMS m/z 255 (10), 227 (20), 165 (30), 148 (35), 135.0444 (calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2}, \Delta 0.2$ mmu, i.e., $\mathrm{MeO}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CO}^{+}$) (100).

7-(4-Methoxybenzoloyl)anethole glycol, verimol B (3): oil; IR $\left(\mathrm{CHCl}_{3}\right) v_{\max } 3612,3443$ (br), 3013, 2974, 2928, 1713, 1607, 1514, $1252 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} N M R$ and ${ }^{13} \mathrm{C}$ NMR, Tables 1 and 2; HREIMS m/z 272 (12) [M ${ }^{+}-$ $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$], 227 (8), 148 (10), 135.0444 (calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2}$, $\Delta 0.2 \mathrm{mmu}$, i.e., $\left.\mathrm{MeO}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CO}^{+}\right)(100)$.

Derivatization of 3 with (S)-(+)-MTPCI To Form (R)-MTPA Esters 3a and 3b. To a solution of $\mathbf{3}$ (15.0 mg) in pyridine (0.16 mL) was added (S)-(+)-MTPCI (0.016 mL). The solution was allowed to stand at room temperature for 13 h , and then N, N-diisopropylethylamine (0.016 mL) was added and the mixture allowed to stand for 10 min . The solvent was evaporated to yield a crude product that was purified by HPLC in 15% ethyl acetate/hexane, yielding compounds 3a and 3b.

Compound $3 \mathrm{a}: \mathrm{t}_{\mathrm{R}} 29.1 \mathrm{~min}$ (51.7\% of total reaction product); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.97(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}$, $\left.\mathrm{H}-3^{\prime} / 5^{\prime}\right), 7.38\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-4^{\prime \prime} / 8^{\prime \prime}\right), 7.34(2 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{H}-3 / 5), 7.28\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime}\right), 7.16$ $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-5^{\prime \prime} / 7^{\prime \prime}\right), 6.90(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}$, H-2'/6'), 6.86 (2H, d, J $=8.6 \mathrm{~Hz}, \mathrm{H}-2 / 6), 5.91$ (1H, d, J $=7.8 \mathrm{~Hz}, \mathrm{H}-7), 5.67(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=7.8,6.4 \mathrm{~Hz}, \mathrm{H}-8), 3.86$
(3H, s, 1'-OMe), 3.79 (3H, s, 1-OMe), 3.42 (3H, s, 2"OMe), 1.17 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-9$).
Compound 3b: $\mathrm{t}_{\mathrm{R}} 32.2 \mathrm{~min}$ (48.3% of total reaction product); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.95(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}$, H-3'/5'), 7.42 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{H}-4^{\prime \prime} / 8^{\prime \prime}$), 7.30 ($2 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{H}-3 / 5), 7.27\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime}\right), 7.15$ $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{H}-5^{\prime \prime} / 7^{\prime \prime}\right), 6.90(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}$, H-2'/6'), 6.83 (2H, d, J $=8.7 \mathrm{~Hz}, \mathrm{H}-2 / 6), 5.87$ (1H, d, J $=7.7 \mathrm{~Hz}, \mathrm{H}-7), 5.67(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=7.7,6.5 \mathrm{~Hz}, \mathrm{H}-8), 3.86$ (3H, s, 4'-OMe), 3.77 (3H, s, 1-OMe), 3.46 (3H, d, J = $\left.0.7 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{OMe}\right), 1.24$ (3H, d, J $=6.5 \mathrm{~Hz}, \mathrm{H}-9$).
Derivatization of 3 with (R)-(-)-MTPCI To F orm (S)-MTPA Esters 3c and 3d. The same procedure was adopted as for $\mathbf{3}$ with (S)-(+)-MTPCI. Chromatographic data for 3c were identical with 3a within 0.1 min (2\% peak integral). NMR data for 3c were identical to 3a within 0.01 ppm. Chromatographic data for 3d were identical with 3b within 0.1 min (2% peak integral). NMR data for 3d were identical to 3b within 0.01 ppm .
Verimol C (4): oil; $[\alpha]_{D}+2.1^{\circ}$ (c $0.08, \mathrm{CHCl}_{3}$); IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\text {max }} 3013,2961,2934,2839,1614,1516,1248$ $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, Tables 1 and 2 ; HREIMS $\mathrm{m} / \mathrm{z} 300.1357$ (5) (calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4}, \Delta 0.5 \mathrm{mmu}$), 256 (10), 227 (50), 164 (100), 135 (30), 120 (45).

Verimol D (5): oil; $[\alpha]_{\mathrm{D}}-1.5^{\circ}$ (c $0.58, \mathrm{CHCl}_{3}$); IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\text {max }} 3393$ (br), 3009, 2966, 2936, 2839, 1612, 1514, $1248 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, Tables 1 and 2; HREIMS m/z 302.1508 (5) (calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4}, \Delta 1.0$ mmu), 301 (30), 255 (30), 240 (100), 225 (55), 165 (90), 137 (100), 119 (60).

Verimol E (6): oil; $[\alpha]_{D}+7.0^{\circ}$ (c $0.43, \mathrm{CHCl}_{3}$); IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\text {max }} 3609,3420$ (br), 3011, 2970, 2936, 2840, 1612, 1514, $1250 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, Tables 1 and 2; HREIMS m/z 302.1511 (35) (calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4}$, $\Delta 0.7 \mathrm{mmu}$) (30), 301 (100), 284 (35), 137 (100).

Derivatization of 6 with 2,2-Dimethoxypropane.

 Compound 6 (20.2 mg) was dissolved in benzene (3 mL) and 2,2-dimethoxypropane (0.16 mL) added with a trace of p-toluenesulfonic acid. The mixture was stirred under reflux for 90 min and $0.32 \mathrm{mg} \mathrm{K} \mathrm{K}_{2} \mathrm{CO}_{3}$ added and then stirred for a further 4 h at room temperature. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Purification of the crude product yielded $\mathbf{6 a}(2.1 \mathrm{mg})$.Compound 6a: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.00(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ 8.7 Hz, H-2'/6'), 6.85 (2H, br d, H-2/6), $6.71(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ 8.7 Hz, H-3/5), 6.68 (2H, d, J $\left.=8.7 \mathrm{~Hz}, \mathrm{H}-3^{\prime} / 6^{\prime}\right), 4.87$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.5 \mathrm{~Hz}, \mathrm{H}-7^{\prime}$), 4.29 ($1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=10.5,6.0$ Hz, H-8), 3.74 (3H, s, 1-OM e), 3.71 (3H, s, 1'-OMe), 2.46 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=10.5 \mathrm{~Hz}, \mathrm{H}-7$), 1.71 (3H, s, H-2"), 1.56 (3H, $\left.\mathrm{s}, \mathrm{H}-3^{\prime \prime}\right), 1.02(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{H}-9) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ δ 158.8 C (C-1'), 158.2 (C-1), 132.7 C (C-4'), 130.5 C (C4), $129.5 \mathrm{CH} \times 2(\mathrm{br})(\mathrm{C}-3 / 5), 128.3 \mathrm{CH} \times 2\left(\mathrm{C}-3^{\prime} / 5^{\prime}\right)$, $113.8 \mathrm{CH} \times 2(\mathrm{C}-2 / 6), 113.3 \mathrm{CH} \times 2\left(\mathrm{C}-2^{\prime} / 6^{\prime}\right) 98.7 \mathrm{C}(\mathrm{C}-$ $\left.1^{\prime \prime}\right), 76.9 \mathrm{CH}\left(\mathrm{C}^{\prime} 7^{\prime}\right), 70.0 \mathrm{CH}(\mathrm{C}-8), 55.5 \mathrm{CH}(\mathrm{C}-7), 55.15$ CH_{3} (1'-OMe), $55.11 \mathrm{CH}_{3}$ (1-OM e), $30.3 \mathrm{CH}_{3}$ (C-3"), 20.1 CH_{3} (C-9), $19.9 \mathrm{CH}_{3}\left(\mathrm{C}-2^{\prime \prime}\right)$.
Compound 6b: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.43(4 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.8.8 \mathrm{~Hz}, \mathrm{H}-3 / 3^{\prime} / 5 / 5^{\prime}\right), 6.93$ (2H, s, H-7/7'), 6.88 (4H, d, J $\left.=8.8 \mathrm{~Hz}, \mathrm{H}-2 / 2^{\prime} / 6 / 6^{\prime}\right), 3.83\left(6 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}, 1^{\prime}-\mathrm{OMe}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 150.9 \mathrm{C} \times 2\left(\mathrm{C}-1 / 1^{\prime}\right), 130.5 \mathrm{C} \times 2(\mathrm{C}-4 /$ $\left.4^{\prime}\right), 127.4 \mathrm{CH} \times 4\left(\mathrm{C}-3 / 3^{\prime} / 5 / 5^{\prime}\right), 126.2 \mathrm{CH} \times 2\left(\mathrm{C}-7 / 7^{\prime}\right)$, $114.1 \mathrm{CH} \times 4\left(\mathrm{C}-2 / 2^{\prime} / 6 / 6^{\prime}\right), 55.3 \mathrm{CH}_{3} \times 2$ (1-OM e/1'OMe).

Verimol F (7): oil; $[\alpha]_{D}+5.5^{\circ}$ (c $0.52, \mathrm{CHCl}_{3}$); IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3583,3458$ (br), 3011, 2974, 2936, 2847, 1609, 1510, $1250 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, Tables 1 and 2; HREIMS m/z 272.1414 (2) (calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3}$, $\Delta-0.2 \mathrm{mmu}), 227$ (100), 212 (5).

Verimol G (8): oil; $[\alpha]_{\mathrm{D}}+1.6^{\circ}$ (c 1.67, CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max }$ 3620, 3420 (br), 3013, 2976, 2930, 2899, 1610, 1510, $1250 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, Table 3; HREIMS m/z $301.1438\left[\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right]$ (10) (calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{4}, \Delta 0.2 \mathrm{mmu}$), 165 (35), 148 (100), 137 (95), 121 (20).

Verimol H (9): oil; $[\alpha]_{D} 0.0^{\circ}$ (c 1.23, CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right) v_{\text {max }} 3007,2932,2857,1612,1516,1464,1250$ $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, Table 3; HREIMS m/z 328.1670 (10) (calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4}, \Delta 0.4 \mathrm{mmu}$), 148 (100).

Verimol I (10): oil; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.33$ (2H, d, J $=8.7 \mathrm{~Hz}, \mathrm{H}-3 / 5), 6.86(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{H}-2 / 6), 6.60$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.9 \mathrm{~Hz}, \mathrm{H}-7), 6.15(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=15.9,6.6$ $\mathrm{Hz}, \mathrm{H}-8), 4.70(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{H}-9), 3.81(3 \mathrm{H}, \mathrm{s}$, 1-OMe), 2.10 (3H, s, MeCO); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 170.9$ C ($\mathrm{C}=0$) , 159.6 C (C-1), 134.1 CH (C-7), 129.0 C (C-4), $127.9 \mathrm{CH} \times 2(\mathrm{C}-3 / 5), 120.9 \mathrm{CH}(\mathrm{C}-8), 114.1 \mathrm{CH} \times 2$ (C-2/6), $65.4 \mathrm{CH}_{2}(\mathrm{C}-9), 55.3 \mathrm{CH}_{3}(1-\mathrm{OMe}), 21.1 \mathrm{CH}_{3}$ (MeCO).

Verimol J (12): oil; IR (CHCl_{3}) $v_{\max } 3419$ (br), 3011, 2974, 1610, 1510, $1220 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.91$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{H}-5), 6.51(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.6 \mathrm{~Hz}, \mathrm{H}-2)$, $6.41(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.3,2.6 \mathrm{~Hz}, \mathrm{H}-6), 4.20(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8)$, 3.77 ($3 \mathrm{H}, \mathrm{s}, 1$-OMe), 2.82 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.7,2.6 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}$) $2.69(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.7,7.2 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{~b}), 1.26(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $6.2 \mathrm{~Hz}, \mathrm{H}-9)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 160.0 \mathrm{C}(\mathrm{C}-1), 156.7 \mathrm{C}$ (C-3), 132.1 CH (C-5), 117.5 C (C-4), 106.2 CH (C-6), $102.8 \mathrm{CH}(\mathrm{C}-2), 70.7 \mathrm{CH}(\mathrm{C}-8), 55.3 \mathrm{CH}_{3}(1-\mathrm{OMe}), 39.9$ $\mathrm{CH}_{2}(\mathrm{C}-7), 23.2 \mathrm{CH}_{3}(\mathrm{C}-9) ;$ HREIMS m/z 182.0945 (35) (calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3}, \Delta-0.2 \mathrm{mmu}$), 164 (45), 137 (100).
Compound (13): oil; IR $\left(\mathrm{CHCl}_{3}\right) v_{\max } 3531,3003$, 2932, 2855, 1610, 1514, $1269 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $6.79\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{H}-6 / 6^{\prime}\right), 6.58(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.9$, $\left.1.9 \mathrm{~Hz}, \mathrm{H}-5 / 5^{\prime}\right), 6.49\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}, \mathrm{H}-3 / 3^{\prime}\right), 3.91$ ($2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.6,6.6 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a} / 9 \mathrm{a}^{\prime}$), 3.82 ($6 \mathrm{H}, \mathrm{s}, 2-\mathrm{OMe}$, 2'-OMe), 3.56 ($2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.6,5.3 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{~b} / 9 \mathrm{~b}^{\prime}$), 2.58 ($2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.7,7.7 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a} / 7 \mathrm{a}^{\prime}$); 2.52 ($2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ 13.7, $\left.7.7 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{~b} / 7 \mathrm{~b}^{\prime}\right)$, 2.16 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 / 8^{\prime}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 146.4 \mathrm{C}\left(\mathrm{C}-2 / 2^{\prime}\right)$, 143.9 C (C-1/1'), 132.3 C (C$\left.4 / 4^{\prime}\right), 121.4 \mathrm{CH}\left(\mathrm{C}-5 / 5^{\prime}\right), 114.1 \mathrm{CH}\left(\mathrm{C}-6 / 6^{\prime}\right), 111.1 \mathrm{CH}(\mathrm{C}-$ $\left.3 / 3^{\prime}\right) 73.3 \mathrm{CH}_{2}\left(\mathrm{C}-9 / 9^{\prime}\right), 55.8 \mathrm{CH}_{3}\left(2 / 2^{\prime}-\mathrm{OMe}\right), 46.5 \mathrm{CH}$ (C-8/8') 39.2 CH 2 (C-7/7'); HREIMS m/z 344.1619 (100) (calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5}, \Delta 0.5 \mathrm{mmu}$), 165 (5), 148 (20), 138 (60).

Verimol K (14): oil; ${ }^{1} \mathrm{H} N M R\left(\mathrm{CDCl}_{3}\right) \delta 9.69(2 \mathrm{H}, \mathrm{br}$ s, $\left.1^{\prime} / 3^{\prime}-\mathrm{OH}\right), 7.43(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-3-7), 7.31(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.3$ $\left.\mathrm{Hz}, \mathrm{H}-5^{\prime}\right), 6.46\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{H}-4^{\prime} / 6^{\prime}\right), 5.50(2 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-1)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 169.5 \mathrm{C}\left(\mathrm{C}-7^{\prime}\right)$, 161.0 C (C-1/ 3), $136.8 \mathrm{CH}\left(\mathrm{C}-5^{\prime}\right), 133.9 \mathrm{C}(\mathrm{C}-2), 129.4 \mathrm{CH}(\mathrm{C}-5), 129.1$ CH (C-4/6), 128.8 CH (C-3/7), $108.3 \mathrm{CH}\left(\mathrm{C}-4^{\prime} / 6^{\prime}\right), 100.1$ C (C-2'), $68.3 \mathrm{CH}_{2}(\mathrm{C}-1) ;$ HREIMS m/z 244.0737 (15) (calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4}, \Delta-0.2 \mathrm{mmu}$), 91 (100).

Acknowledgment. Wethank Dr. Richard Saunders of the Department of Ecology and Biodiversity for identifying the sample of I. verum and Dr. Hao Dang for collecting the sample. This research was funded by a CRCG grant for research into the chemotaxonomy of the Illiciales.

References and Notes

(1) Claus, E. P.; Tyler, V. E. Pharmacognosy, 5th ed.; Lea and Febiger: Philadelphia, 1965.
(2) Small, E. Econ. Bot. 1996, 50, 337-339.
(3) Tardy, E. Bull. Soc. Chim. Fr. 1990, 1902.
(4) J ackson, R. W.; Short, W. F. J. Chem. Soc. 1937, 513-516.
(5) Okuyama, E.; Nakamura, T.; Yamazaki, M. Chem. Pharm. Bull. 1993, 41, 1670-1671.
(6) Wolf, R. B. J. Nat. Prod. 1986, 49, 156-158.
(7) Pelter, A.; Peverall, S.; Pitchford, A. Tetrahedron 1996, 52, 1085-1094.
(8) Ohtani, I.; Kusumi, T.; K Kashman, Y.; Kakisawa, H. J . Am. Chem. Soc. 1991, 113, 4092-4096.
(9) Gleye, C.; Laurens, A.; Hocquemiller, R.; Laprevote, O.; Serani, L.; Cavé, A. Phytochemistry 1997, 44, 1541-1545.
(10) Christofides, J. C.; Davies, D. B. J. Am. Chem. Soc. 1983, 105, 5099-5105.
(11) Whiting, D. A. Nat. Prod. Rep. 1985, 191-211.
(12) Daubresse, N.; Francesch, C.; M hamdi, F.; Rolando, C. Synthesis 1994, 369-371.
(13) Fang, J.-M.; Hsu, K.-C.; Cheng, Y.-S. Phytochemistry, 1989, 28, 3553-3555.
(14) Pan, H.; Lundgren, L. N. Phytochemistry 1995, 39, 1423-1428.
(15) Mohan, R. S.; Whalen, D. L.J . Org. Chem. 1993 58, 2663-2669.
(16) Pouchert, C. J.; Behnke, J. Aldrich Library of ${ }^{13} \mathrm{C}$ and ${ }^{1 \mathrm{H}}$ FT NMR spectra; Aldrich Chemical Co.: Milwaukee, 1993; Vol. 2, p 208A.
(17) Pouchert, C. J.; Behnke, J. Aldrich Library of ${ }^{13} \mathrm{C}$ and ${ }^{1 \mathrm{H}} \mathrm{FT}$ NMR spectra; Aldrich Chemical Co.: Milwaukee, 1993; Vol. 2, p 409A.
(18) Pouchert, C. J.; Behnke, J. Aldrich Library of ${ }^{13} \mathrm{C}$ and ${ }^{1 \mathrm{H}}$ FT NMR spectra; Aldrich Chemical Co.: Milwaukee, 1993; Vol. 2, p 352B.
(19) Pouchert, C. J.; Behnke, J . Aldrich Library of ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ FT NMR spectra; Aldrich Chemical Co.: Milwaukee, 1993; Vol. 2, p 941A.
(20) Pouchert, C. J.; Behnke, J. Aldrich Library of ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ FT NMR spectra; Aldrich Chemical Co.: Milwaukee, 1993; Vol. 2, p 1079B.
NP9800553

[^0]: * To whom correspondence should be addressed. Tel.: 852-2859 7915. Fax: 852-2857 1586. E-mail: GDBROWN@HKUCC.HKU.HK.

